Simulation and Analysis of the Topographic Effects on Snow-Free Albedo over Rugged Terrain
نویسندگان
چکیده
Topography complicates the modeling and retrieval of land surface albedo due to shadow effects and the redistribution of incident radiation. Neglecting topographic effects may lead to a significant bias when estimating land surface albedo over a single slope. However, for rugged terrain, a comprehensive and systematic investigation of topographic effects on land surface albedo is currently ongoing. Accurately estimating topographic effects on land surface albedo over a rugged terrain presents a challenge in remote sensing modeling and applications. In this paper, we focused on the development of a simplified estimation method for snow-free albedo over a rugged terrain at a 1-km scale based on a 30-m fine-scale digital elevation model (DEM). The proposed method was compared with the radiosity approach based on simulated and real DEMs. The results of the comparison showed that the proposed method provided adequate computational efficiency and satisfactory accuracy simultaneously. Then, the topographic effects on snow-free albedo were quantitatively investigated and interpreted by considering the mean slope, subpixel aspect distribution, solar zenith angle, and solar azimuth angle. The results showed that the more rugged the terrain and the larger the solar illumination angle, the more intense the topographic effects were on black-sky albedo (BSA). The maximum absolute deviation (MAD) and the maximum relative deviation (MRD) of the BSA over a rugged terrain reached 0.28 and 85%, respectively, when the SZA was 60◦ for different terrains. Topographic effects varied with the mean slope, subpixel aspect distribution, SZA and SAA, which should not be neglected when modeling albedo.
منابع مشابه
A Multi-Scale Validation Strategy for Albedo Products over Rugged Terrain and Preliminary Application in Heihe River Basin, China
The issue for the validation of land surface remote sensing albedo products over rugged terrain is the scale effects between the reference albedo measurements and coarse scale albedo products, which is caused by the complex topography. This paper illustrates a multi-scale validation strategy specified for coarse scale albedo validation over rugged terrain. A Mountain-Radiation-Transfer-based (M...
متن کاملImproved Topographic Normalization for Landsat TM Images by Introducing the MODIS Surface BRDF
In rugged terrain, the accuracy of surface reflectance estimations is compromised by atmospheric and topographic effects. We propose a new method to simultaneously eliminate atmospheric and terrain effects in Landsat Thematic Mapper (TM) images based on a 30 m digital elevation model (DEM) and Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric products. Moreover, we define a norm...
متن کاملA Systematic Survey on Different Topographic Correction Techniques for Rugged Terrain Satellite Imagery
In remote sensed data, topographic corrections are very important to overcome the topographic effects such as shadow effects. These topographic effects occurs especially in case of rugged terrain because sun facing slope represents maximum reflectance values and opposite side slope represents minimum reflectance values. These topographic effects leads to an inaccurate classification into differ...
متن کاملSpectral Signature of Alpine Snow Cover from the Landsat Thematic Mapper
M a p p i n g of snow and estimation of snow characteristics from satellite remote sensing data require that we distinguish snow from other surface cover and from clouds and compensate for the effects of the atmosphere and rugged terrain. The spectral signature of the snowpack is calculated from a radiative transfer model accounting for scattering and absorption by the ice grains, water inclusi...
متن کاملCharacterization of the Simulated Regional Snow Albedo Feedback Using a Regional Climate Model over Complex Terrain
Midlatitude mountain regions are particularly sensitive to climate change because of an active snow albedo feedback (SAF). Here, the SAF is characterized and quantified over the complex terrain of the Colorado Headwaters region using high-resolution regional climate model simulations. A pair of 7-yr control and pseudo-global warming simulations is used to study the regional climate response to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 10 شماره
صفحات -
تاریخ انتشار 2018